


DAI DI NEUROSCIENZE
ISTITUTO DI NEUROCHIRURGIA
UOC DI NEUROCHIRURGIA B
USO DI RADIOCHIRURGIA E NCH STEREOTASSICA

GRUPPO INTERDISCIPLINARE NEURO-ONCOLOGICO VERONESE (GrINOV)

**Verona, Sept. 17th, 2015** 

ONCOLÒGICO



# GAMMA KNIFE TREATMENT FOR ACOUSTIC NEUROMA. THE VERONA EXPERIENCE

A Nicolato, C Parisi, R Foroni, M
Longhi, E Zivelonghi, N Tommasi,
L Rosta, GK Ricciardi, PA Polloniato,
M Rasi, A D'Ottavio, E Piovan,
C Cavedon, GP Pinna, M Meglio





### **GAMMA KNIFE IN VSs**

# **GOALS OF RS TREATMENT**

# RADICAL TREATMENT OF CRITICAL LESIONS WITH VERY LOW RISKS OF PERMANENT COMPLICATIONS AND HEARING PRESERVATION





### **GAMMA KNIFE IN IAC-VSs**

### ADVANTAGES OF GK RS

- NO INVASIVENESS
- PREVENTION OF INOPERABLE REMNANT PROGRESSION
- PREVENTION OF FURTHER SURGERY
- EXTREMELY HIGH MECHANICAL AND RADIATION FOCUS PRECISION AND COINCIDENCE (±0.3 mm)
- HIGHLY CONFORMAL DOSE PLANNINGS
- HIGH GRADIENT DOSE
- DIRECT STEREO-MRI ACQUISITION: volumetric and steady-state sequences





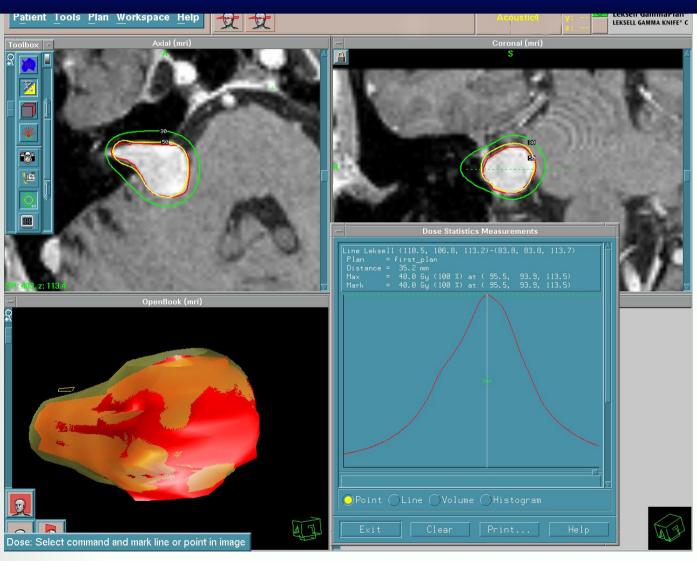
### **GAMMA KNIFE IN IAC-VSs**

### ADVANTAGES OF GK RS

- NO INVASIVENESS
- PREVENTION OF INOPERABLE REMNANT PROGRESSION
- PREVENTION OF FURTHER SURGERY
- EXTREMELY HIGH MECHANICAL AND RADIATION FOCUS PRECISION AND COINCIDENCE (±0.3 mm)
- HIGHLY CONFORMAL DOSE PLANNINGS
- HIGH GRADIENT DOSE
- DIRECT STEREO-MRI ACQUISITION: volumetric and steady-state sequences






### **GAMMA KNIFE IN VSs**







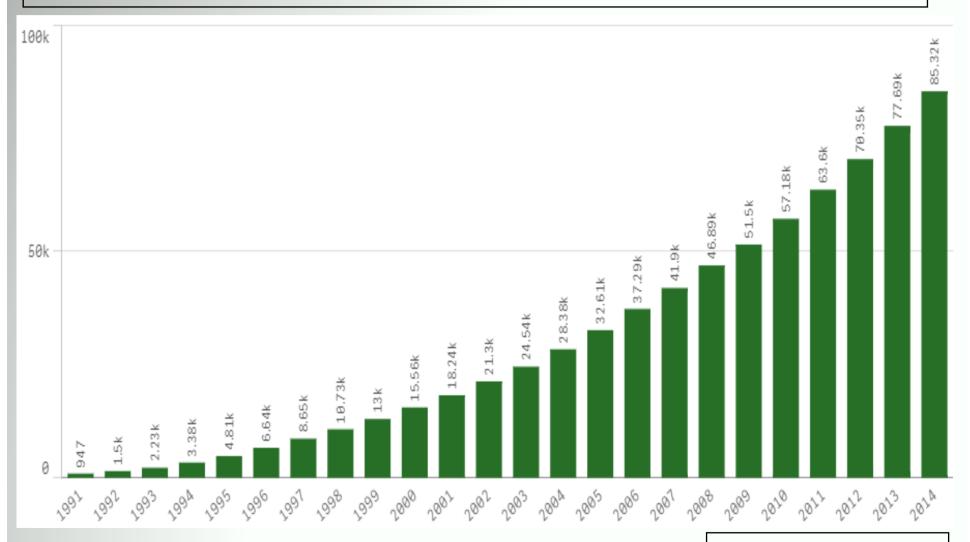
# STEEP DOSE FALL-OFF







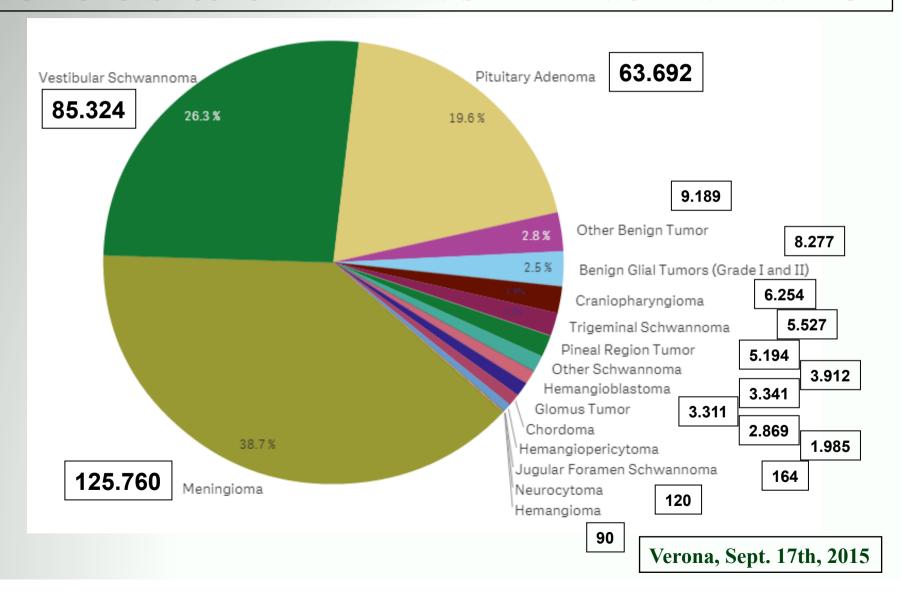
### **GAMMA KNIFE IN IAC-VSs**


- ADVANTAGES FOR THE PATIENT
- ADVANTAGES FOR HEALTH SYSTEM
- NON-INVASIVE TECHNIQUE
- DAY SURGERY PROCEDURE
- HIGH NET INCOME

  (€ 7,500, 65% net income for the N.H.S.



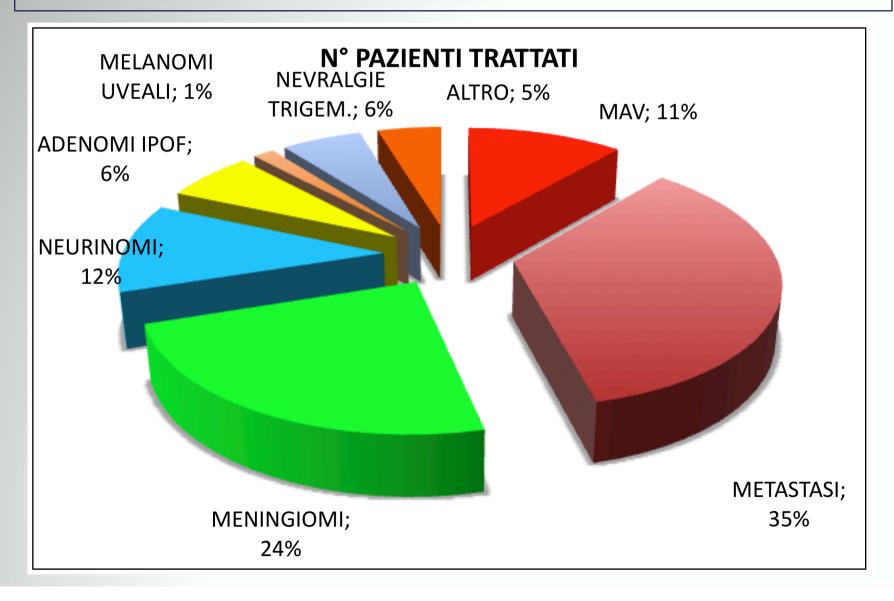



### VSs – CUMULATIVE PATIENTS TREATED WORLDWIDE WITH GK








### BENIGN TUMORS – CUMULATIVE PATIENTS TREATED WORLDWIDE WITH GK







# GAMMA KNIFE IN VSs – AOUI VERONA

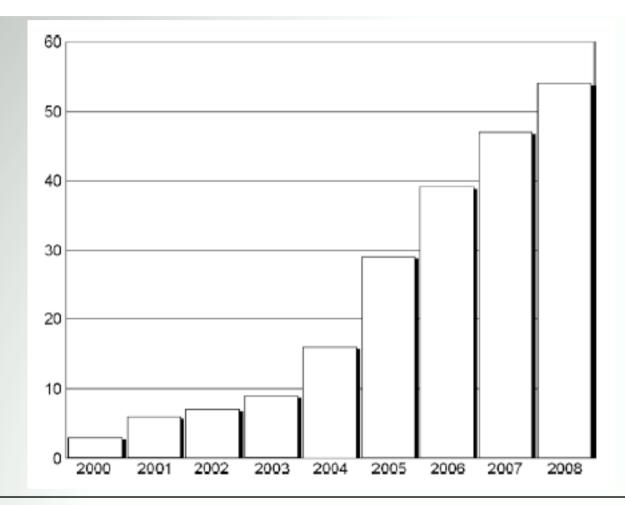






Otology & Neurotology 32:834–837 © 2011, Otology & Neurotology, Inc.

# Stereotactic Radiosurgery for Vestibular Schwannomas: A Survey of Current Practice Patterns of Neurotologists


\*Michael A. German, \*Shawn Zardouz, \*Mehdi K. Sina, \*Kasra Ziai, and \*†Hamid Reza Djalilian

\*Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery; and †Department of Biomedical Engineering, University of California, Irvine, California, U.S.A.

This article discusses the results of a cross-sectional survey of members of the American Neurotology Society (ANS) that was conducted to ascertain practitioner attitudes and behaviors pertaining to radiation as a treatment modality for VS.







Cumulative number of neurotology performing SRS between 2000 and 2008

The maximum size recommended for radiation by Members of the American Neurotology Society who perform SRS for VSs was 2.5 cm





### **GAMMA KNIFE IN VSs**

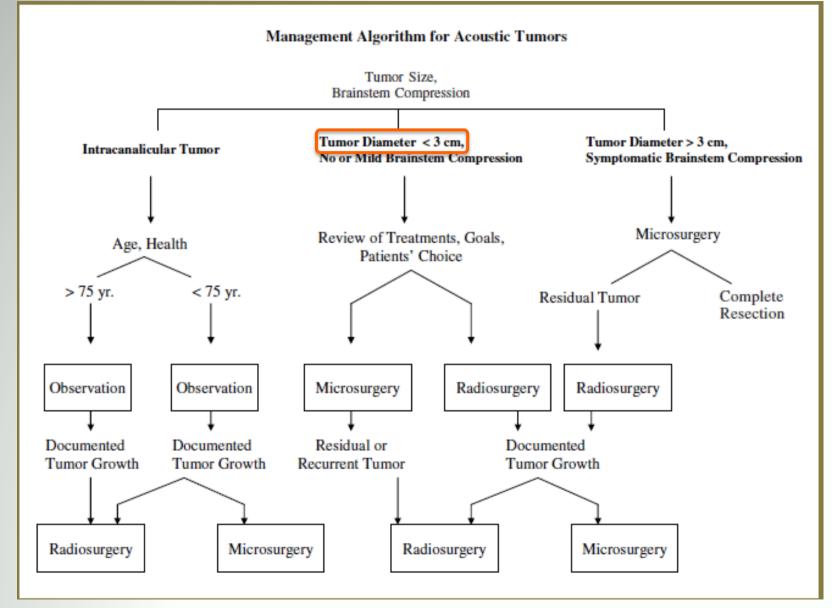
### **INDICATIONS**



Radiosurgery Practice Guideline Initiative

Stereotactic Radiosurgery for Patients with

# Vestibular Schwannomas


Radiosurgery Practice Guideline Report #4-06

ORIGINAL GUIDELINE: May 2006 MOST RECENT LITERATURE SEARCH: March 2006

This practice guideline, together with a report on "Vestibular Schwannoma Management" is an original guideline approved by the IRSA® (International RadioSurgery Association) Board of Directors and issued in May 2006.











### **GAMMA KNIFE IN VSs**

### **OUR EXPERIENCE**

February 1993 – August 2015

TREATED PATIENTS:

9,100

VSs:

1,013





### **GAMMA KNIFE IN VSs**

### **OUR EXPERIENCE**

#### Reprint from

J. Kanzaki, M. Tos, M. Sanna, D.A. Moffat, T. Kunihiro, Y. Inoue (Eds.)

Acoustic Neuroma: Consensus on Systems for Reporting Results

# Gamma Knife Radiosurgery in Vestibular Schwannomas: Clinical and Radiological Impact on the Tumor Course

Massimo Gerosa, Antonio Nicolato, Roberto Foroni, and Albino Bricolo

2002





### **GAMMA KNIFE IN VSs**

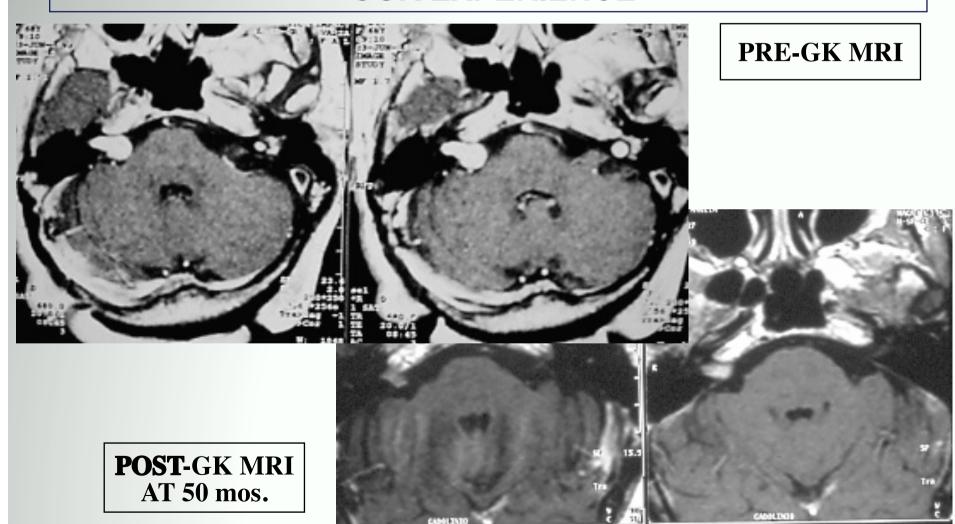
### **OUR EXPERIENCE**

J Neurosurg 113:128–135, 2010

Gamma Knife surgery in vestibular schwannomas: impact on the anterior and posterior labyrinth

### Clinical article

MASSIMO GEROSA, M.D., <sup>1</sup> NAZARENA MESIANO, M.D., <sup>2</sup> MICHELE LONGHI, M.D., <sup>1</sup> ANTONIO DE SIMONE, PH.D., <sup>1</sup> ROBERTO FORONI, PH.D., <sup>1</sup> ANGELA VERLICCHI, M.D., <sup>1</sup> BRUNO ZANOTTI, M.D., <sup>3</sup> AND ANTONIO NICOLATO, M.D.


|                              | %    |
|------------------------------|------|
| • HEARING PRESERV. (G-R 1/2) | 66.0 |
| • TGC                        | 93.0 |
| • FACIAL IMPAIRMENT          | 2.7  |





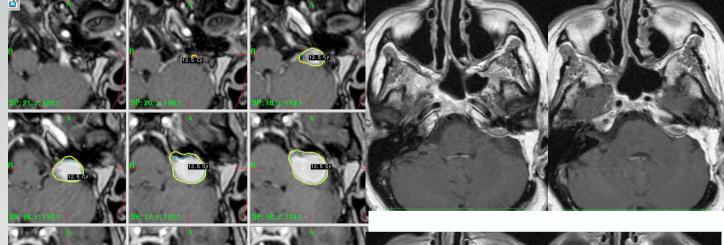
# GAMMA KNIFE IN VSs

### **OUR EXPERIENCE**

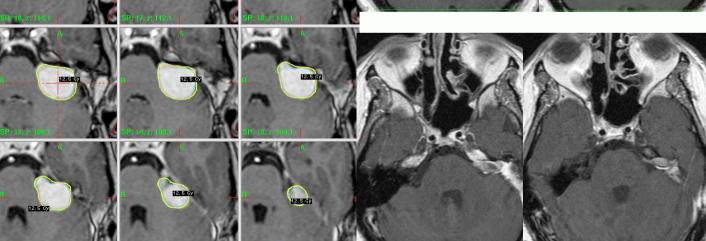




MR on


**GK** day

# AZIENDA OSPEDALIERA UNIVERSITARIA INTEGRATA VERONA




# GAMMA KNIFE IN VSs

### **OUR EXPERIENCE**



MR FU AT 37 mos.







# GAMMA KNIFE IN VSs

### **SUMMARY OF RECENT SRS LITERATURE**





| Author           | N° Pts | Device | FU period  | LTC %               | Hear.<br>Preser. | Facial N.<br>Preserv. | Malign.<br>Transfor.   |
|------------------|--------|--------|------------|---------------------|------------------|-----------------------|------------------------|
| Boari 2014       | 379    | GK     | Med.69.5m  | 97.1                | 49%              | 98,9%                 | 0.0                    |
| Hasegawa<br>2013 | 440    | GK     | Med.12.5y. | 93.0<br>(92% ≥10y.) | 43% at 5y.       | 99.7                  | Annual incidence: 0,02 |





# **COMPARISON MS vs. SRS**

| Author                       | Type of study                           | TC %           | TC %           | Hear. | Preser.                    | FacialN % | Preser.                        | Cost-<br>effectiveness                                          |
|------------------------------|-----------------------------------------|----------------|----------------|-------|----------------------------|-----------|--------------------------------|-----------------------------------------------------------------|
|                              |                                         | MS             | SRS            | MS    | SRS                        | MS        | SRS                            | MS vs. SRS                                                      |
| Sarmiento •                  | Focused re: • 3 prospec, • 6 retrosp,   | 94-100         | 90.5-100       | 0-5   | 40-68                      | 66-83     | 98-100                         | MS: • over 2 times higher than SRS.                             |
| (Ø≤3 cm)                     | • Variuos case series                   |                |                |       |                            |           |                                | • 0.5% postop. mortality                                        |
| Wolbers<br>2013<br>(Ø≤3 cm)  | Focused re: • 6 cohort studies selected | _              |                |       | Better<br>Hear.<br>preser. |           | Better<br>Facial N.<br>outcome | SRS: • Better QOL • No mortality • No surg/ anaes. compl.       |
| Myrseth<br>2009<br>(Ø≤2.5cm) | Prospetive open, non-randomized study   | Compa<br>rable | Compara<br>ble | 0.0   | 68.0 at<br>2 y.            | 53.6      | 98.3                           | SRS: Better QOL at 2y (Glasgow Benefit Inventory questionnaire) |

MS: microsurgery; SRS: stereotactic radiosurgery





### **COMPARISON MS vs. SRS**

### **CONCLUSIONS**

Sarmiento JM, et al. IMPROVING OUTCOME IN PATIENTS WITH VESTIBULAR SCHWANNOMAS. MICROSURGERY *versus* RADIOSURGERY *(focused review)*.

J NEUROSURG SCI 2013;57:23-44

# SRS can be considered as the the primary modality of choice for treatment of most vestibular schwannomas that are <3cm





### **COMPARISON MS vs. SRS**

### **CONCLUSIONS**

Open Access Research



What intervention is best practice for vestibular schwannomas? A systematic review of controlled studies

John G Wolbers, <sup>1</sup> Alof HG Dallenga, <sup>1</sup> Alejandra Mendez Romero, <sup>2</sup> Anne van Linge<sup>3</sup>

BMJ Open 2013;**3:e001345.** doi:10.1136/bmjopen-2012-001345 *(focused review).* 

The available evidence indicates radiosurgery to be the best practice for solitary vestibular schwannomas up to 30 mm in cisternal diameter.





### **COMPARISON MS vs. SRS**

### CONCLUSIONS

# VESTIBULAR SCHWANNOMA: SURGERY OR GAMMA KNIFE RADIOSURGERY? A PROSPECTIVE, NONRANDOMIZED STUDY

#### Erling Myrseth, M.D.

Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway

#### Per Møller, M.D., Ph.D.

Department of Otorhinolaryngology, Haukeland University Hospital, and Insilute of Surgical Science, University of Bergen, Bergen, Norway

#### Paal-Henning Pedersen, M.D., Ph.D.

Department of Neurosurgery, Haukeland University Hospital, and Institute of Surgical Science, University of Bergen, Bergen, Norway

#### Morten Lund-Johansen, M.D., Ph.D.

Department of Neurosurgery, Haukeland University Hospital, and Institute of Surgical Science, University of Bergen, Bergen, Norway

#### Reprint requests:

Erling Myrseth, M.D., Department of Neurosurgery, Haukeland University Hospital, N-5021 Bergert, Norway. Email: entry@helse-bergeruno

Received, May 16, 2008. Accepted, October 23, 2008. OBJECTIVE: To conduct a prospective, open, nonrandomized study of treatment-associated morbidity in patients undergoing microsurgery or gamma knife radiosurgery (GKRS) for vestibular schwannomas.

METHODS: Ninety-one patients with vestibular schwannomas with a maximum tumor diameter of 25 mm in the cerebellopontine angle were treated according to a prospective protocol either by GKRS (63 patients) or open microsurgery (28 patients) using the suboccipital approach. Primary end points included hearing function, according to the Gardner-Robertson scale, and facial nerve function, according to the House-Brackmann scale at 2 years. Clinical data included a balance platform test, score for tinnitus and vertigo using a visual analog scale, and working ability. Patients responded to the quality-of-life questionnaires Short-Form 36 and Glasgow Benefit Inventory.

**RESULTS:** Three elderly GKRS patients withdrew; all remaining patients were followed for 2 years. Both primary end points were highly significant in favor of GKRS (P < 0.001). Evidence of reduced facial nerve function (House-Brackmann grade 2 or poorer) at 2 years was found in 13 of 28 open microsurgery patients and 1 of 60 GKRS patients. Thirteen of 28 patients who underwent surgery had serviceable hearing (Gardner-Robertson grade A or B) preoperatively, but none had serviceable hearing postoperatively. Twenty-five of 60 GKRS patients had serviceable hearing before treatment, and 17 (68%) of them had serviceable hearing 2 years after treatment. The tinnitus and vertigo visual analog scale score, as well as balance platform tests, did not change significantly after treatment, and working status did not differ between the groups at 2 years. Quality of life was significantly better in the GKRS group at 2 years, based on the Glasgow Benefit Inventory questionnaire. One GKRS patient required operative treatment within the 2-year study period.

CONCLUSION: This is the second prospective study to demonstrate better facial nerve and hearing outcomes from GKRS than from open surgery for small- and medium-sized vestibular schwannomas.

KEY WORDS: Facial nerve function, Gamma knife radiosurgery, Hearing preservation, Microsurgery, Quality of life, Vestibular schwannoma

Neurasurgery 64:654-663, 2009

DOE 10.1227/01.NEU.0000340684.60443.55

www.neurosurgery-online.com

This prospective study demonstrates better facial nerve and hearing outcomes from GKRS than from open surgery for small- and mediumsized (maximum tumor Ø ≤25 mm) vestibular schwannomas.

Neurosurgery 2009

Prospetive open, nonrandomized study





### **GAMMA KNIFE IN IAC-VSs**

### **OUR EXPERIENCE**

February 1993 – August 2015

TREATED PATIENTS:

9,100

VSs:

1,013

IAC-VSs:

107

IAC: internal acoustic canal





### **GAMMA KNIFE IN IAC-VSs**

### **OUR EXPERIENCE**

# February 1993 – August 2015 107 TREATED PATIENTS

M/F 54/53

MEAN AGE (Range) 56.1 yrs. (12–80)

SURGICAL RESIDUAL 13/107 pts. (12.1%)

MEAN VOLUME (RANGE) 0.19 mL (0.04–0.70)

Mean PI/ PD/ MD /#ISOCENTERS 52.1% / 12.1Gy / 23.3Gy / 3.7





### **GAMMA KNIFE IN IAC-VSs**

### **OUR EXPERIENCE**

# February 1993 – August 2012 66 TREATED PATIENTS WITH AT LEAST 36-MONTH-F-U

MEDIAN SURVIVAL TIME 52.6 Mos

ALIVE 66/66 (100%) Pts.

TGC 65/66 (98,5%)

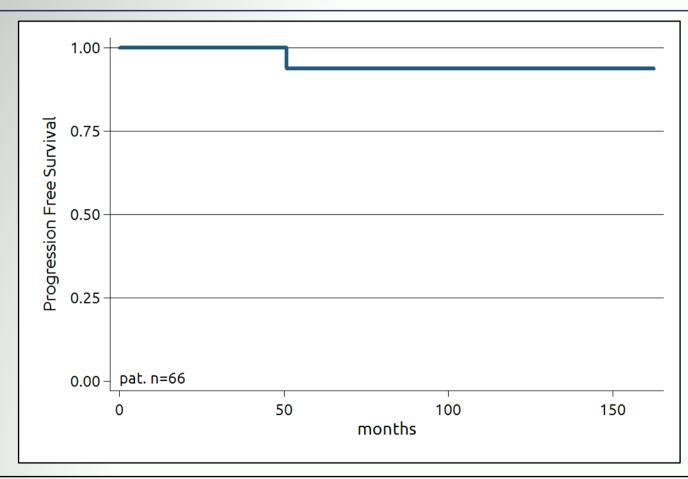
HEARING PRESERVATION 22/47 (46.8%) Pts.

22/47 (46.8%) Pts. (47 Pts. with GR I-III pre-GK)

FACIAL PRESERVATION 65/66 (98,5%)\*

OTHER WORSENING (tinnitus, ataxia) 3/66 (4.5%)

MALIGNANT TRANSFORMATION 0/66


\*mild spasm of facial nerve



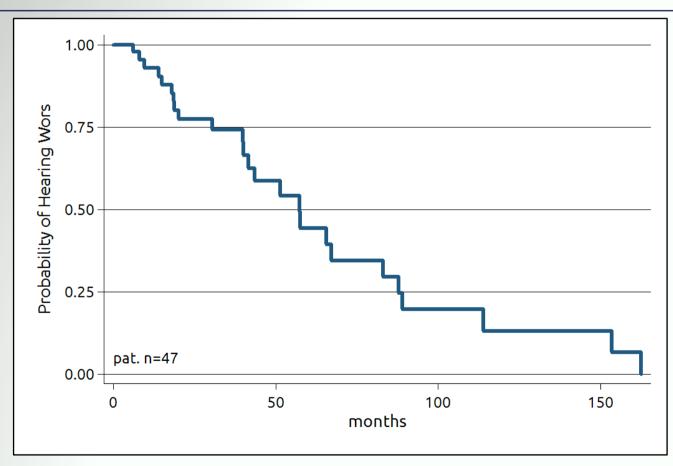


# **GAMMA KNIFE IN IAC-VSs**

### **OUR EXPERIENCE**



**ACTUARIAL PFS RATE:** 


96% at 10 Y.





### **GAMMA KNIFE IN IAC-VSs**

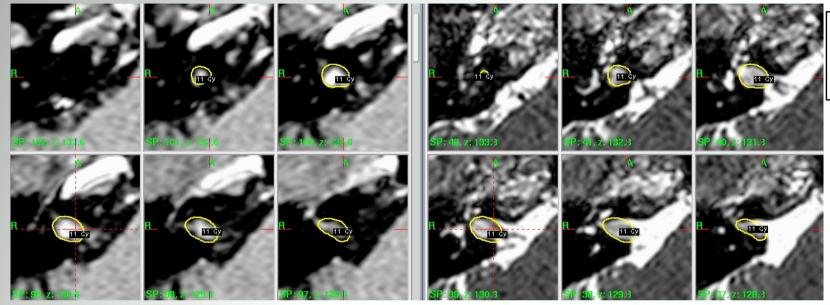
### **OUR EXPERIENCE**



**ACTUARIAL HEARING PRESERVATION RATE: 43% at 5 Y.** 

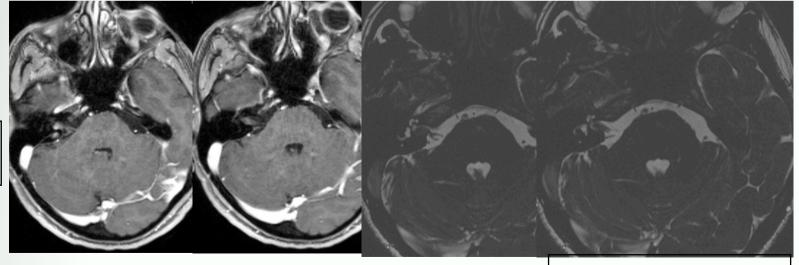





# **GAMMA KNIFE IN IAC-VSs**

# STATISTICAL ANALYSIS: prognostic factors influencing hear.wors.

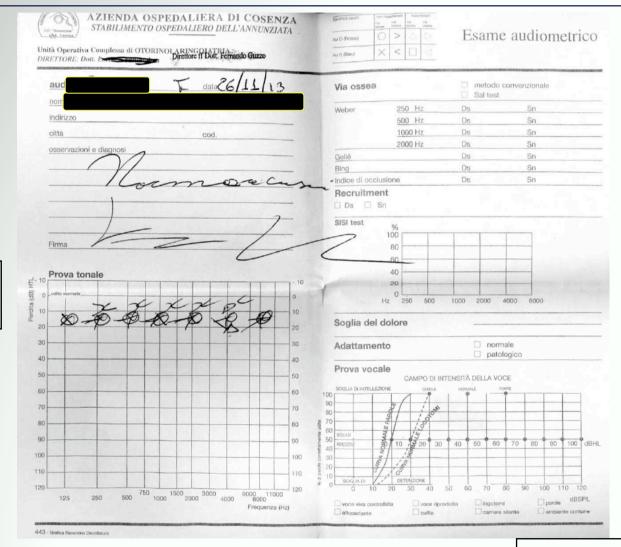
| Independent variables                | Odds<br>Ratio        | p-value            | #<br>Observ. | Statistically significant |
|--------------------------------------|----------------------|--------------------|--------------|---------------------------|
| Pre-GK VS increased volume const     | 1.05<br>1.428571     | 0.946<br>0.469     | 32           | N                         |
| Post-GK intra-VS necrosis time const | 1.011856<br>.5319617 | <b>0.049</b> 0.228 | 38           | Y                         |
| Average dose to the cochlea const    | .8609878<br>1.862945 | 0.509<br>0.497     | 23           | N                         |
| VS volume (mL) const                 | .3367242<br>1.285514 | 0.679<br>0.665     | 45           | N                         |
| Prescription dose (Gy) const         | .6008056<br>561.6    | <b>0.031</b> 0.029 | 47           | Y                         |








MR on GK day, Jan 2012


MR FU AT 22 mos.

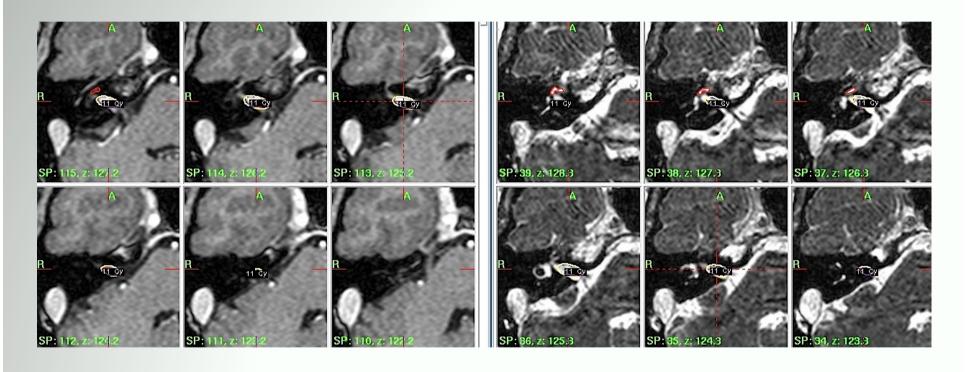






# **GAMMA KNIFE IN IAC-VSs**




AUDIOGRAM on Nov, 2013



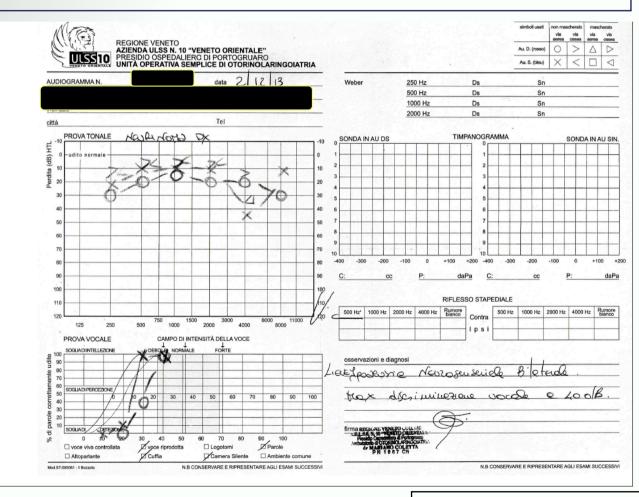


# GAMMA KNIFE IN IAC-VSs

### **OUR EXPERIENCE**



MR on GK day, October 4<sup>th</sup>, 2012






### **GAMMA KNIFE IN IAC-VSs**

### **OUR EXPERIENCE**

AUDIOGRAM on Dec. 2<sup>nd</sup>, 2013







# GAMMA KNIFE IN IAC-VSs

| Author         | N° Pts                  | Device | FU period<br>(Median) | LTC %              | Hear. Preser.                 | Facial<br>N<br>Preser. | Prog.Fact.<br>for hear.<br>Deterior. |
|----------------|-------------------------|--------|-----------------------|--------------------|-------------------------------|------------------------|--------------------------------------|
| Kim<br>2013    | 60                      | GK     | 62.0 m.               | 100 clinical<br>TC | 57 .0<br>PTA≤50 dB<br>SDS≥50% |                        | •TVE≥20%                             |
| Present series | 66<br>47 p.<br>GR I-III | GK     | 52.6 m.               | 98.5<br>(96%at10y) | 46.8%<br>(43% at5y.)          | 99.7                   | • Necrosis time • PD (Gy)            |

PTA: pure tone average

SDS: speach discrimination score

TVE: transient volume expansion





### **GAMMA KNIFE IN IAC-VSs**

Original Article 157

# Facial Nerve Outcome after Vestibular Schwannoma Resection: A Comparative Meta-Analysis of Endoscopic versus Open Retrosigmoid Approach

Abdullah Alobaid<sup>1</sup> Mohammed Aref<sup>1</sup> Michael Ross Bennardo<sup>1</sup> Forough Farrokhyar<sup>2</sup> Kesava Reddy<sup>1</sup>

Address for correspondence Abdullah Alobaid, MD, FRCSC, 96 St. Patrick Street, Apt. 1210, Toronto, Ontario M5T1V2, Canada (e-mail: abdullah.alobaid@medportal.ca).

J Neurol Surg B 2015;76:157-162.

<sup>&</sup>lt;sup>1</sup>Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada

<sup>&</sup>lt;sup>2</sup>Department of Surgery, McMaster University, Hamilton, Ontario, Canada





| 1 | able 1 | <b>1</b> Final | studies | included | in | the analysis |
|---|--------|----------------|---------|----------|----|--------------|
|---|--------|----------------|---------|----------|----|--------------|

|            | Study                              | No. of patients included in final analysis |
|------------|------------------------------------|--------------------------------------------|
| Open       | Samii et al <sup>7–10</sup>        | 962                                        |
| approach   | Colletti and Fiorino <sup>12</sup> | 103                                        |
|            | Moffat et al <sup>13</sup>         | 50                                         |
|            | Jung et al <sup>14</sup>           | 30                                         |
|            | Mazzoni et al <sup>15</sup>        | 150                                        |
|            | Tonn et al <sup>16</sup>           | 508                                        |
|            | Strauss <sup>17</sup>              | 22                                         |
|            | Lassaletta et al <sup>18</sup>     | 65                                         |
|            | Maw et al <sup>19</sup>            | 40                                         |
|            | Yamakami et al <sup>20</sup>       | 50                                         |
|            | Darwish et al <sup>21</sup>        | 97                                         |
|            | Zhang et al <sup>22</sup>          | 105                                        |
|            | Samii et al <sup>23</sup>          | 200                                        |
|            | Sinha and Sharma <sup>24</sup>     | 58                                         |
|            | Veronezi et al <sup>25</sup>       | 20                                         |
|            | Yang et al <sup>11</sup>           | 110                                        |
|            | Chen et al <sup>26</sup>           | 103                                        |
|            | Chen et al <sup>27</sup>           | 145                                        |
|            | Zhao et al <sup>28</sup>           | 89                                         |
|            | Di Maio et al <sup>29</sup>        | 47                                         |
|            | Gerganov et al <sup>30</sup>       | 53                                         |
| Endoscopic | Göksu et al <sup>31</sup>          | 32                                         |
| approach   | Magnan et al <sup>32</sup>         | 119                                        |
|            | Kabil and Shahinian <sup>33</sup>  | 112                                        |
|            | Shahinian and Ra <sup>5</sup>      | 527                                        |

META-ANALYSIS REVIEW FOR ALL ARTICLES DESCRIBING BOTH APPROACHES FOR VS FROM 1996 TO 2011:

- 21 OPEN APPROACH
- 4 ENDOSCOPIC APPROACH SELECTED ARTICLES.





# **GAMMA KNIFE IN IAC-VSs**

Table 2 Summary of meta-analysis comparing open series with minimal access endoscopic series with 95% confidence interval

|                                                                  | Open retrosigmoid,<br>% (95% CI) | Minimal access endoscopic retrosigmoid, % (95% CI) |  |  |  |
|------------------------------------------------------------------|----------------------------------|----------------------------------------------------|--|--|--|
| Good facial nerve outcome (HB 1 or 2)                            | 67.0% (61–73%)                   | 94% (92–95%)                                       |  |  |  |
| GTR                                                              | 91% (80–98%)                     | 97% (92–99%)                                       |  |  |  |
| Meaningful hearing (PTA < 80 dB and speech discrimination > 20%) | 22.6% (10.4–37.6%)               | 46% (38–54%)                                       |  |  |  |
| CSF leak                                                         | 8.2% (4.8–12.3%)                 | 4.6% (2.3-7.2%)                                    |  |  |  |
| Wound infection                                                  | 1.3% (0.6–2.3%)                  | 2.6% (1.5-4.0%)                                    |  |  |  |
| Recurrence                                                       | 5.4% (1.8–10.1%)                 | 2.2% (1.3–3.4%)                                    |  |  |  |
| Death                                                            | 0.9% (0.3–2%)                    | 0%                                                 |  |  |  |
| Facial nerve Outcome (HB 1)                                      | 98.0%-100.0%                     |                                                    |  |  |  |
| LTC                                                              | LTC                              |                                                    |  |  |  |
| <b>Hearing Preservation (GR I-II)</b>                            | 40.0%-68.0%                      |                                                    |  |  |  |
| Other surgical complications                                     | 0.0%                             |                                                    |  |  |  |
| Death                                                            |                                  | 0.0%                                               |  |  |  |





### **GAMMA KNIFE IN IAC-VSs**

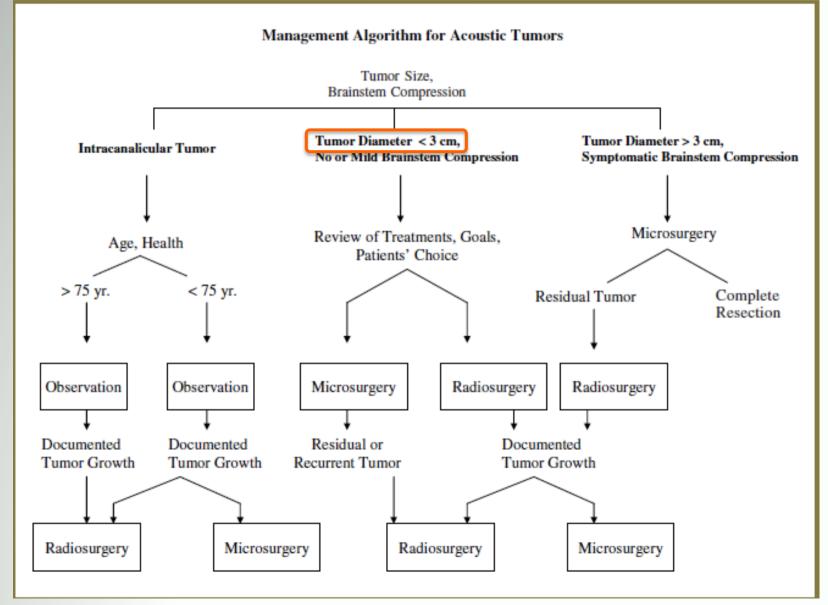
### CONCLUSIONS

# **SRS IN VSs ALLOWS:**

- VERY HIGH TGC
- POSSIBILITY OF HEARING PRESERVATION
- VERY HIGH RATE OF FACIAL NERVE PRESERVATION
- NO RISK OF "SURGICAL" COMPLICATIONS
- DAY SURGERY PROCEDURE
- HIGH NET INCOME FOR HEALTH SYSTEM






### **GAMMA KNIFE IN IAC-VSs**

### **CONCLUSIONS**

- .....THEN, NO NEED FOR FURTHER STUDIES?
- Ø ≤ 2 cm: GK/SRS
- $\emptyset \ge 3$  cm (USA),  $\emptyset \ge 2.5$  cm (EC):
  - microsurgical endoscopic approach
- $2 \text{ cm} > \emptyset < 2,5 \text{ cm}$ :
  - what is the goal standard for these VSs?





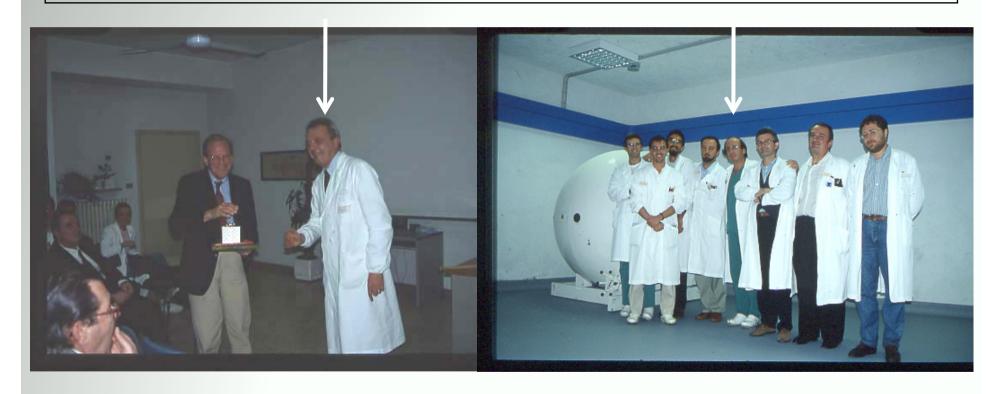







# **GAMMA KNIFE IN IAC-VSs**

# **CONCLUSIONS**




VS WITH Ø > 3 cm TREATED WITH PROTON BEAM:.....





# **GAMMA KNIFE VERONA: 20 YEAR-RESULTS**



February 1993 – February 2013







# THANK YOU FOR THE ATTENTION